SALES TRAINING AND MANAGEMENT SUPPORT TOOL
FOR INDEPENDENT INSURANCE AGENCIES

A Project
Presented
To the Faculty of
California State University, Chico

In Partial Fulfillment
of the Requirements for the Degree
Master of Arts
in
Interdisciplinary Studies:
Adult Learning and Employment

by
© Russell Glynn Lee 2010
Spring 2010
SALES TRAINING AND PERFORMANCE SUPPORT TOOL
FOR INDEPENDENT INSURANCE AGENCIES

A Project

by

Russell Glynn Lee

Spring 2010

APPROVED BY THE INTERIM DEAN OF THE SCHOOL OF GRADUATE, INTERNATIONAL, AND INTERDISCIPLINARY STUDIES:

__
Mark J. Morlock, Ph.D.

APPROVED BY THE GRADUATE ADVISORY COMMITTEE:

__
Sara A. Trechter, Ph.D.
Graduate Coordinator

__
Tom Welsh, Ph.D., Chair

__
Lauren K. Wright, Ph.D.
PUBLICATION RIGHTS

No portion of this project may be reprinted or reproduced in any manner unacceptable to the usual copyright restrictions without the written permission of the author.
DEDICATION

This project is dedicated to my wife, Deborah Willsey, for her patience and support. The process was surprisingly long and arduous. She was with me every step of the way.

Also, I know that my parents, Glynn and Peggy Lee, would have been extremely proud of the accomplishment, notwithstanding how long it took me to get it done.
ACKNOWLEDGMENTS

I thank my committee members, Sara Trechter, Tom Welsh, and Lauren Wright, for their help and support with this project. Completing the project was more difficult than I anticipated it would be. Their support and encouragement was invaluable.

I must also thank Anne Russell for her help formatting the project and putting all the pieces together. She definitely smoothed out the last few speed bumps.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Publication Rights</th>
<th>iii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedication</td>
<td>iv</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>v</td>
</tr>
<tr>
<td>List of Figures</td>
<td>viii</td>
</tr>
<tr>
<td>Abstract</td>
<td>ix</td>
</tr>
</tbody>
</table>

CHAPTER

I. Introduction

Scope of the Project	3
Significance of the Project	4
Limitations of the Project	4

II. Review of Literature

<p>| Introduction | 6 |
| The Theoretical Framework | 6 |
| Social Cognitive Theory | 7 |
| Principles of Instruction | 17 |
| Salesforce Control | 20 |
| Sales Skills and Sales Training | 23 |
| Web-based Learning and Performance Support | 27 |
| Blended Learning | 27 |
| Performance Support | 28 |
| Knowledge Management | 32 |
| Learning Management Systems | 34 |
| Web Applications | 36 |
| Summary | 36 |</p>
<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>III. Methodology</td>
<td>38</td>
</tr>
<tr>
<td>Designing the Online Learning and Performance Tool</td>
<td>38</td>
</tr>
<tr>
<td>Distillation of Best Practices</td>
<td>39</td>
</tr>
<tr>
<td>Identification of Core Sales Skills</td>
<td>40</td>
</tr>
<tr>
<td>Design of Learning and Performance Support Tools</td>
<td>41</td>
</tr>
<tr>
<td>Best Practice and Online Blended Learning</td>
<td>52</td>
</tr>
<tr>
<td>Website Design</td>
<td>53</td>
</tr>
<tr>
<td>Summary</td>
<td>63</td>
</tr>
<tr>
<td>IV. Summary, Conclusion, and Recommendations</td>
<td>65</td>
</tr>
<tr>
<td>References</td>
<td>67</td>
</tr>
<tr>
<td>Appendix</td>
<td></td>
</tr>
<tr>
<td>A. Supplemental Screenshots</td>
<td>73</td>
</tr>
<tr>
<td>FIGURE</td>
<td>PAGE</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>1.</td>
<td>42</td>
</tr>
<tr>
<td>2.</td>
<td>42</td>
</tr>
<tr>
<td>3.</td>
<td>44</td>
</tr>
<tr>
<td>4.</td>
<td>46</td>
</tr>
<tr>
<td>5.</td>
<td>47</td>
</tr>
<tr>
<td>6.</td>
<td>48</td>
</tr>
<tr>
<td>7.</td>
<td>49</td>
</tr>
<tr>
<td>8.</td>
<td>54</td>
</tr>
<tr>
<td>9.</td>
<td>55</td>
</tr>
<tr>
<td>10.</td>
<td>56</td>
</tr>
<tr>
<td>11.</td>
<td>57</td>
</tr>
<tr>
<td>12.</td>
<td>58</td>
</tr>
<tr>
<td>13.</td>
<td>59</td>
</tr>
<tr>
<td>14.</td>
<td>60</td>
</tr>
<tr>
<td>15.</td>
<td>62</td>
</tr>
</tbody>
</table>
ABSTRACT

SALES TRAINING AND PERFORMANCE SUPPORT TOOL
FOR INDEPENDENT INSURANCE AGENCIES

by

© Russell Glynn Lee 2010

Master of Arts in Interdisciplinary Studies:
Adult Learning and Employment
California State University, Chico
Spring 2010

Independent insurance agencies are confronting an increasingly competitive sales environment in the commercial insurance arena. Sustaining growth is a challenge that impacts profitability and continued independence and perpetuation, and smaller agencies are confronted with a clear challenge. Larger national and regional agencies have the budgets to hire in-house training and sales management specialists, but smaller agencies are left either to create their own sales training program, purchase and attempt to implement change from a sales training book, look to outside sales training consultants, or some combination of the three. Any of the above approaches is complicated by the fact that independent insurance agencies are generally managed by partners skilled in sales, not training design or performance support
This Online Sales Training and Performance Support Tool is designed to provide a framework and resources to guide independent insurance agencies through the process of sales training and performance improvement. Agencies using this system will engage in best practices learning and performance support activities, using resources informed by knowledge areas such as training design and delivery, blended learning, performance support, knowledge management, and sales force control.

Significance for this project is that it is designed as an intuitive “learn by using” tool that enables learning and improves performance through collaborative use. Agencies using the tool will incrementally grow sales knowledge and performance, “learn to learn” organizationally, and learn to more effectively support performance. Small independent insurance agencies will be able to confront the challenges of the era with a tool that allows them to confidently build sales skills and competencies internally.
CHAPTER I

INTRODUCTION

The purpose of this project is the development of an online resource to support the sales training and performance improvement efforts of independent insurance agencies. Having worked now for almost 15 years in the agency arena, I have often observed the difficulties smaller agencies encounter providing effective training and transferring training to sales performance. While there are many articles, books, sales trainers, and customer relationship management (CRM) software applications that address sales training and performance issues, I have found none that bring all of the elements together in a single, user-friendly platform.

Over the years I have witnessed attempts to utilize all of the above-mentioned solutions. Articles and books suggest approaches and describe requisite skills for sales success but provide little or no support for instructional design and delivery, performance support, or skill transference. The sales trainers I observed primarily focused on their branded sales approaches, which were generally verbal “tricks” employed during sales presentations to lead the prospect to a desired conclusion. Additionally, their training styles were “talking head” deliveries, which were subsequently adopted by the agencies as they continued the training in-house. And finally, none of the sales training products I was exposed to included effective post-training performance support strategies or tools.
While many of the resources contained useful information, little lasting change came of them.

Sophisticated online CRM solutions are available and do provide support for guiding and monitoring specific sales activities, but the learning curve for effective use can be daunting and costs can be very high. Additionally, CRM solutions are designed as activity control, not capability control systems, and as Challagalla and Shervani (1996) point out,

Activity control refers to the specification of activities a person is expected to perform on a regular basis . . . Capability control, on the other hand emphasizes the development of individual skills and abilities. Capability control involves setting goals for the level of skills and abilities people must possess, monitoring their skills and abilities, [and] providing guidance for improvement if needed. . . . (p. 90)

To maximize salesforce effectiveness sales managers must at a minimum address the imposing challenges of training design, performance support, and leveraging technology to support training and performance improvement initiatives. However, as noted, sales managers in smaller agencies are most often successful salespersons promoted to a position that now requires knowledge and skills not necessarily acquired during their sales careers.

Fortunately, developments in web technologies, particularly user-friendly “cloud computing” applications, have made the development of low-cost online training and performance support tools affordable and feasible. It is now possible to create integrated web environments that draw from areas such as learning management, performance support, knowledge management, and salesforce control, and to provide
functionality that allows “low-tech” users to comfortably use and to some extent cus-
tomize the application going forward.

Scope of the Project

The goal of this project was the development of an online learning and perfor-
mance support tool for sales that meets three key criteria:

1. It provides a framework that incorporates best practices learning and
performance support methodologies to support organizational and individual capability.

2. It is presented in a user-friendly, intuitive format.

3. It is relatively inexpensive.

The final product is a combination of the knowledge bases from a variety of
disciplines, including learning management systems, training and development, perform-
tance technology and support, knowledge management, personal sales skills, and sales-
force control. These are all consistent with the common denominator of social cognitive
learning: Bandura’s (1977,1986) comprehensive psychological framework for guiding
learning and performance. The project was guided by best practices methodologies and
validated research, but it was also informed by my many years of work as a business
training and performance support consultant.

The Online Learning and Performance Support Tool is presented in this paper
as screenshot representations. The screenshots are taken from a fully functional tool that
was developed using cloud computing resources for the user interface and many of the
online elements, and Adobe® Acrobat® 9 Pro for development of interactive
performance support documents. As noted, this project currently is a fully functional tool but could also be used as a prototype for custom development.

The primary audience for the Online Learning and Performance Support Tool is managers of small insurance agencies; however, the tool would be applicable to many sales environments with only minor modification.

Significance of the Project

This project is significant in four ways: (a) it provides a customized online sales training and performance support tool for smaller insurance agencies; (b) it integrates personal sales skill acquisition into an incremental, performance-based learning system; (c) it supports and enables learning for sales personnel, for sales coaches, for sales managers; and (d) it provides a framework for capturing, categorizing, and distributing organizational sales knowledge.

Limitations of the Project

There are two limitations that should be noted. First, this project does not include the development of online learning modules in the traditional sense of a user logging in and completing coursework online. It provides a blended-learning environment that supports and encourages use of a variety of training options, including the uploading of online learning modules, but is primarily focused on the development and use of on-the-job performance based instructional tools.
Also, the project does not include written user guides other than notes included in PDF documents. Video “how-to” guides are included in the online component but can only be represented in this document as screenshots.
CHAPTER II

REVIEW OF LITERATURE

Introduction

This project relies on research from a wide variety of disciplines. In order to give form to the project and to guide the development process, it was necessary to first develop a theoretical framework within which the varied disciplines could be fitted. This literature review begins with the theoretical construct and then covers three broad areas that also informed the project: (a) research on sales skills, (b) research on components of web-based learning and performance support systems, and (c) a short description of selected web and software applications available to support implementation of the project. Synopses of those areas particularly relevant to this project will be provided as conclusions to each of the described sections.

The Theoretical Framework

Organizational learning and performance is a complicated process that is impacted not only by the design and delivery of instruction, but also by the skills and inclinations of the supervisors and employees, and the culture and management of the organization. An online learning and performance support tool that does not contemplate and provide for these complexities will not work.
The theoretical framework for this project is based on the integration of three areas of research. First, a review of a psychological theory of learning and performance establishes the foundation. Second, a distillation of best practices instructional design and its real-world, action science application to an online corporate learning environment provides a frame of reference for organizational learning. Finally, a review of salesforce control research examines the concept of behavior-based management and its application to learning and performance.

Social Cognitive Theory

Social cognitive theory (Bandura, 1977, 1986) is an integrative theory combining elements of behavioral and cognitive psychology and melding learning and performance within a unified framework. As such, it provides an excellent theoretical starting point for this project. This portion of the literature review will first present the basic elements of the theory as developed and expanded by Bandura (1977, 1986, 2000) and Wood and Bandura (1989), and will then discuss aspects of sales research that have been influenced by social cognitive theory.

Social cognitive theory has been widely cited by adult learning theorists (Gagne, Wager, Golas, & Keller, 2005; Knowles, Holton, & Swanson, 1998). Merriam and Caffaella (as cited in Gibson, 2004) described it as one of the five traditional adult learning theories. Social cognitive theory proposes a comprehensive framework for understanding human thought, motivation, and action based on reciprocal determinism. This framework is represented as a triadic construct that includes the environment, behaviors, and personal characteristics. Each of these components interacts with the
others in a reciprocal fashion, resulting in a dynamic and ongoing process. Reciprocity is not proposed in terms of an equal action and reaction, or in terms of immediacy of action and reaction, but rather as clarification that each component is affected by and affects each of the others over time (Bandura, 1977, 1986).

Social cognitive theory suggests that learning and performance behaviors can be purposefully cultivated through attention to underlying personal determinants and the environment. Five components of social cognitive learning theory that have particular relevance to this project are observational learning, enactive learning, self-management, social incentives and reinforcement, and self-efficacy. These five mechanisms, each important alone, also interact with one another and collectively contribute to the ability and inclination to learn and to transfer learning to performance, (Bandura, 1977, 1986).

Observational learning teaches skills and also a process for organizing and understanding rules of behavior (Bandura, 1977, 1986). People learn principally by observing the behaviors of others and the consequences of those behaviors. In the context of social cognitive learning theory, observational learning often focuses on direct observation of modeled behavior. However, modeling can also include symbolic representations of behaviors portrayed through a variety of formats including text, still images, audio, and video, which allows development of a variety of training media (Bandura, 1986).

According to Bandura (1986), there are four key personal processes that govern observational learning:
1. Attentional processes determine what people selectively see when they observe a modeled activity. In order to learn effectively, people need to pay attention to the relevant aspects of the modeled activity.

2. Retention processes require the transformation and restructuring of modeled behavior to symbolic forms, such as conceptions, rules, images, and verbal symbols. Learners who transform and code modeled behavior, either using verbal coding or vivid imagery, learn and retain better than those who passively observe. Additionally, learners who cognitively rehearse modeled behavior have better retention and reproduction capability.

3. Production processes involve converting symbolic knowledge to action. This is done by conception-matching, a process where a person’s symbolic representations are enacted, informed by feedback, and improved.

4. Motivational processes are described as direct, vicarious, and self-produced. People will adopt modeled behaviors if they believe they will produce desired results. This belief can be communicated directly through their own success, or vicariously through the observed success of a colleague. Additionally, people will regulate themselves to engage or not engage in behaviors that they personally either approve or disapprove of.

Enactive learning is on-the-job observational learning, away from the controlled learning environment of structured training. Facilitated modeling provides context, rules, and feedback in a structured environment, whereas enactive learning requires that people construct meaning through direct experience. “Some cognitive and behavioral
structures are largely developed in this way, and many of those acquired through modeling are refined and perfected experientially” (Bandura, 1986, p. 106).

It must be noted, however, that enactive learning can be fraught with peril and inefficiency. “When people fail to recognize the effects of their actions, or they inadequately process the outcome information provided by variations in actions over time, they do not learn much...” (Bandura, 1986, p. 111). For purposes of training and job skill acquisition, learning complex behaviors is made much more efficient using skilled models and feedback compared to conceptions derived and internalized from direct experience (Bandura, 1986).

Guided mastery describes a process of modeling and feedback that incorporates a sequential process enabling learners to master and practice difficult tasks. It provides for controlled on-the-job skill transfer opportunities that enhance the likelihood of success (Bandura, 1986). Addressing organizational implementation of guided mastery, Bandura (2000) describes a process that includes three components:

1. Instructive modeling deconstructs complex skills into component subskills, and designs modeling scenarios for each. Once subskills are mastered, they can be applied creatively to the unique and often complex situations encountered in the work environment.

2. Guided skill perfection enables learners to apply learned skills to problems in a simulated environment, transforming knowledge to action. Learners practice acquired skills in a conception-matching process, using feedback to close the gap between actual
performance and target performance. Performance is enhanced using both cognitive and behavioral rehearsal.

3. Transfer of training by self-directed success involves creating real-life situations for learners to initially use newly acquired skills in environments that are likely to produce good results.

According to Bandura (2000), as learners master the modeled skills the next step is to provide an approach for enhancing higher-order thinking and problem solving capabilities. Cognitive mastery modeling extends the facilitative concepts of guided mastery modeling to thinking skills and action strategies and promotes problem solving and reasoning skills. Cognitive mastery modeling requires that models verbalize their thought process as they analyze a problem, seek information relevant to it, generate alternative solutions, judge the likely outcomes associated with each alternative, and select the best way of implementing the chosen solution. They also verbalize their strategies for handling difficulties, how to recover from errors, and how to motivate themselves. (Bandura, 2000, p. 130)

Cognitive mastery modeling is a very effective training tool because the enactment effectively commands the learner’s attention and provides both visual and auditory engagement of the cognitive process. Also, rules and processes can be revisited using different scenarios. This helps develop enhanced generative thinking skills (Bandura, 2000).

Self-regulation of behavior is an important component of social cognitive theory, particularly in the context of employment and learning. It is managed by individuals through a combination of interconnected processes including intentions and goal-
setting, self-evaluation, and self-motivation. Goal-setting and self-evaluation play a central role in this process (Bandura, 1986, 2000).

Purposeful use of intentions and goals contributes to self-regulation of behavior. In social cognitive theory, “An intention is defined as the determination to perform certain activities or to bring about a certain future state of affairs” (Bandura, 1986, p. 467). Intentional behavior regulation is represented by two cognitive mechanisms: forethought and goal-setting and self-evaluation. Goal-setting and self-evaluation is of particular relevance to this project.

Goal-setting and self-evaluation initiate a cognitive comparison process that first sets standards and then measures performance against those standards. “Intentions, whether expressed in determination to engage in a specific course of action or to attain certain levels of performance, increase the likelihood that sought futures will be realized” (Bandura, 1986, p. 467).

Different goal-setting mechanisms trigger different effects, including motivation, self-efficacy, and self-satisfaction, and research has confirmed that those who know and follow proper goal-setting techniques out-perform those who set goals without structure, or set no goals (Bandura, 1986, 2000). According to Bandura (2000), to enhance goal-setting success the following properties should be included:

1. Goal specificity—goals that are too vague or lack specific personal commitments have little impact. Goals should be clearly defined and include specific descriptions of behaviors required to achieve them.
2. Goal challenge—goals should be challenging, but attainable. Self-efficacy (discussed below) is reinforced when challenging goals are defined and attained. People who set and pursue challenging goals generally outperform those who set easily attainable goals.

3. Goal proximity—goals can include long-term and ambitious targets but should be segmented into short-term subgoals that support long-term success.

4. Goal commitment—commitment to goal achievement is an important component in the process of goal-setting and is affected by the degree to which one values the achievement of the goal, the perception of attainability, and the strength of the pledge one makes when committing to the goal.

Social cognitive theory (Bandura, 1977, 1986) developed as a rethinking of behavior modification and incorporates many of the basic elements of behavior modification, including the concepts of reinforcement and punishment as either motivators or inhibitors of behavior. Further, social incentives, particularly applied by persons who can administer reward or punishment, are powerful behavioral motivators. “Development of social incentives is crucial for successful human relationships and accomplishments” (Bandura, 1987, p. 235). Additionally, properly applied social incentives also contribute positively to one’s sense of self-efficacy (Bandura, 1977, 1986).

Perceived self-efficacy is defined as “. . . people’s beliefs in their capabilities to mobilize the motivation, cognitive resources, and courses of action needed to exercise control over events in their lives” (Wood & Bandura, 1989, p. 364). It is a central principal of social cognitive learning, particularly in organizations (Bandura, 2000; Wood &
Bandura, 1989). Success in the workplace requires not only the requisite knowledge and skills, but also, “. . . a resilient self-belief in one’s capabilities to exercise control over events to accomplish desired goals” (Wood & Bandura, 1989, p. 364).

According to Bandura (1986), the sources of self-knowledge regarding one’s efficacy (whether valid or not) include

1. Performance attainments—success, or the lack of it, is the most powerful source of efficacy information. Once a high level of self-efficacy has been developed, failures are less likely to significantly lower one’s assessment of efficacy.

2. Vicarious experiences—observing others who are similar succeed supports positive self-efficacy assessments, as does relevant modeling of target behaviors. “Although vicarious experiences are generally weaker than direct ones, vicarious forms can produce significant, enduring changes through their effects on performance” (p. 400).

3. Verbal persuasion—persuasion by a supervisor, coach or colleague can convince some employees who lack confidence to try things they might otherwise avoid, and to apply themselves more diligently to tasks they are undertaking. Additionally, persuasion is often effectively embedded in evaluative feedback.

4. Physiological states—situational arousal, stress, or tension can affect one’s perception of self-efficacy through judgmental processes. According to Wood and Bandura (1989), susceptibility to physiological stressors can be lessened through physical well-being, reduced stress, and awareness and strategies for dealing with tendencies for dysfunction in stressful situation.
Self-efficacy is the hub around which social cognitive theory revolves in organizational applications (Bandura, 2000). Within the framework of social cognitive theory, self-efficacy is driven by, but more importantly drives, motivation, learning and performance attainment, and emotional well-being. “Self-efficacy theory provides a conceptual framework within which to study the determinants in effective work design and the mechanisms through which organizations enhance organizational functioning” (p. 122).

Social cognitive theory and its constituent components have been extremely influential in a variety of disciplines relevant to this project, including: self-efficacy and sales performance (Barling & Russell, 1983; Krishnan, Netemeyer, & Boles, 2002; Stajkovic & Luthans, 1998); self management and sales performance (Frayne & Geringer, 2000; Sauers, Hunt, & Bass, 1990); sales training (Wilson, Strutton, & Farris, 2002); sales training design (Attia, Honeycutt, & Leach, 2005); sales failure attribution (Dixon & Schertzer, 2005); interpersonal skills training and maintenance (Gist, Stevens, & Bavetta, 1991); and human resource development (Gibson, 2004; Gist, 1987).

The research investigating self-efficacy and sales performance has largely confirmed positive correlations between self-efficacy and work-related performance (Barling & Russell, 1983; Krishnan, Netemeyer & Boles, 2002). Krishnan et al. (2002) investigated self-efficacy as an antecedent to sales success and found that “having confidence in his or her ability to sell appears to be positively related to a salesperson’s performance level” (p. 291), even in complicated sales environments. Frayne and Geringer (2000) designed a comprehensive self-management and self-efficacy training.
They found that skill in self-management affects sales performance positively and that self-efficacy is a mediating variable in the relationship.

Additionally, self-efficacy has been found to be a useful tool for measuring trainees’ intention to transfer. It is also a good predictor of a salesperson’s ability to accurately assess and bounce back from failure. Wilson et al. (2002) reported that their research confirmed a positive relationship between self-efficacy and transfer of product knowledge. Attia et al. (2005) indicate that “. . . training investments are most often wasted because of inadequate transfer” and that “learning transfer measures may be the only type of evaluation to provide valuable insight” (p. 259) on the effectiveness of training. They recommend that training interventions include post-training self-efficacy assessment because of its utility for predicting intention to transfer. Dixon and Schertzer (2005) found high self-efficacy and optimism are predictors for more accurate assessment of sales failures, as high self-efficacy sellers tend to avoid the fundamental error of blaming external forces and instead are more inclined to honestly assess what they did wrong and what they could have done better.

There is ample support in the literature to suggest incorporating social cognitive theory (Bandura, 1977, 1986) into sales training and performance support efforts. This project established social cognitive theory (Bandura, 1977, 1986) as the starting point for project development and endeavored to build guided mastery, cognitive mastery, intentions and goal-setting, and self-efficacy into the completed product.
Principles of Instruction

While social cognitive theory provides the psychological foundation for learning and performance, for the purposes of this project it does not provide an adequately detailed instructional design methodology. This section introduces a useful framework for instructional design in the workplace that has been extended to include web-supported learning.

Merrill (2002) analyzed many of the prominent instructional design theories and models and distilled from them a set of principles of instruction that he suggests are necessary and applicable to best practices instructional design. He puts forward the premise that “there will be a decrement in learning and performance when a given instructional program or practice violates or fails to implement one or more of these first principles” (p. 44).

The principles described by Merrill (2002) are quite consistent with the descriptions of guided mastery and cognitive mastery found in social cognitive theory (Bandura, 1986). Merrill identifies the following as “first principles of instruction” and provides design implications for each:

1. Learning is best achieved using real-world problems and the utility of the new knowledge to be learned is shown to the learner, rather than just described.

2. Learning is best achieved when prior knowledge is activated as a foundation and prior knowledge is verbalized or demonstrated by the learner.

3. Learning is best achieved through demonstration of new knowledge, including procedural demonstrations, process visualizations, and modeling.
4. Learning is best achieved when new knowledge is used in structured, sequential problem-solving activities and learners are given feedback and coaching.

5. Learning is best achieved when new knowledge is applied to real work problems and learners subsequently discuss and analyze their experience applying new knowledge.

These first principles and Merrill’s (2002) supporting corollaries lend themselves to the development of an easy-to-use instructional design format that can guide instruction and guide inexperienced users through the process of designing effective training.

Action researchers at the Open University of Shell International Exploration and Production (Shell EP) have utilized and extended Merrill’s principles to improve their corporate learning design (Collis & Margaryan, 2004, 2005; Collis, Margaryan, & Kennedy, 2004; Margayan, Collis, & Cooke, 2004). Their work, although directed toward developing an effective web-supported learning environment for a large multinational corporation, provides valuable insight for this project.

Their search for innovative solutions arose from the realization that online only learning was often not an optimum solution. In fact, in many cases, neither classroom training alone nor online training alone provided as effective a solution as could be achieved by combining elements of both and building in on-the-job learner interaction with colleagues and supervisors (Margaryan et al., 2004). Shell EP at one point transitioned many of its class modules to online only but found that,

learning also needs to involve social interaction and collaborative learning, work-based activities with supervisor involvement and input from experienced facilitators, while retaining and even extending the flexibility of time and place that e-learning can offer. (Margaryan et al., 2004, p. 266)
To support the social aspects of learning, address geographical separation, and promote internal knowledge sharing, Shell EP augmented Merrill’s First Principles of Instruction (Merrill, 2002) by adding the following required elements to their instructional design format: collaboration (both between learners in specific courses and colleagues in the workplace); structured and informal knowledge sharing opportunities; involvement of supervisors in employees’ learning paths; differentiation of learners, both in areas of experience and skill and learning preferences; and the identification, use and reuse of company knowledge and knowledge objects (Collis & Margaryan, 2005).

To further enhance learning, Shell EP began replacing content-based learning modules with activity-based learning and added both formal and informal structures to facilitate social learning, supported by an interactive web-based infrastructure. This blended solution improved short-term learning results and provided a framework to address two other challenges: first, the challenge of consistent training despite geographic spread, and second, the realization that they had a large demographic of skilled employees approaching retirement age, and that they had not done a good job of facilitating knowledge transfer from senior to more junior employees (Collis et al., 2004).

The above-noted elements are fully integrated into, and supported by, a web-enabled learning management system. The system houses and coordinates courses, course delivery, course resources, and learners, and also supports course design, and knowledge capture, storage, and indexing. The company has immediate access to who knows what, when they learned it, and what they contributed in the process of learning it (Collis & Margaryan, 2004).
The lessons described above provide real-world direction for developing an effective online learning and performance support tool that uses advanced web-supported learning approaches leavened with knowledge of how adults learn best. Of particular importance for this project is the realization that web technologies can be leveraged to support a variety of collaborative learning relationships. Learning and performance are supported by people addressing real-world problems and learning from each other.

Salesforce Control

Salesforce control studies the extent to which companies attempt to control and manage salesforce behaviors and the organizational mechanisms that are engaged to support control efforts. The dominant themes in salesforce research were established by the initial studies of Anderson and Oliver (1987) and Jaworski (1988).

Anderson and Oliver (1987) describe control as either outcome-based or behavior-based. Outcome-based control is generally directed and measured by financial outcomes such as sales volume or dollars generated. The advantages of outcome-based sales control include the relative ease of measuring performance, the congruity of the control system with the “independent” nature of salespeople, and the fact that because most salespeople work alone, establishing controls can be difficult and expensive. Disadvantages of outcome-based control include the potential that motivators that drive the salesperson, such as short-term profit, may not be advantageous to the firm. Also, possible future attempts to establish behavioral control tend to meet more resistance with a salesforce accustomed to relative freedom of outcome-based control systems.
Behavior-based control systems are related to the process of selling, are viewed as more difficult to implement, and use more subjective measures. “Person-,
ableness, product knowledge, presentation quality, closing ability, services performed,
number of active accounts, calls made, amount of correspondence, and days worked are
common examples” (Anderson & Oliver, 1987, p. 78). However, the advantages of beha-

vior-based control allow sales managers to protect and promote the long-term interests of
the firm and to cultivate the image that the firm desires to maintain with prospects and
customers. Disadvantages include the complexity of implementing a behavior-based sys-
tem and the potential inequity of subjective evaluative mechanisms (Anderson & Oliver,
1987).

Jaworski’s (1988) framework describes organizational control as a mix of
formal (written policies, procedures, etc.) and informal (self-directed, small group, and
organizational) systems. Formal controls include input controls, process controls, and
output controls. Input controls are actions taken by an organization before an activity
occurs, and include training. Process controls occur when the organization defines
specific behaviors to guide the sales process and establishes controls to monitor those
behaviors. Output controls reflect the establishment of measurable performance stan-
dards, usually financial, and the evaluation of performance based on the established

standards (Jaworski, 1988).

According to Jaworski (1988), informal controls begin with self-control. “By
self-control, the individual establishes personal objectives, monitors their attainment, and
adjusts behavior if off course” (Jaworski, 1988, p. 27). Social control is the establishment
of small group norms that guide behavior and support enforcement mechanisms such as praising, kidding, and even ostracizing. Cultural control can include the entire company and “. . . is realized by the slow accumulation of organizational stories, rituals, legends, and norms of social interaction” (Jaworski, 1988, p. 27).

Challagalla and Shervani (1997) extend the definition of control by emphasizing the inclusion of both information and reinforcement as defined components:

control, therefore, refers to the setting of goals, monitoring of progress, providing of feedback, and the administering of rewards and punishments in order to align individual and group behavior with the organization’s objectives. In other words, control includes both the provision of information (i.e., goal-setting, monitoring, and feedback) and administering of reinforcements (i.e., contingent rewards and punishments). (p. 161)

Challagalla and Shervani also differentiate between activity control and capability control. Activity control is the control of daily activities associated with the sales process and can include activities such as prospecting, cold-calling and qualifying. Capability control is the control of sales skills and abilities.

In the salesforce context, control is exercised by encouraging, supporting, and reinforcing behaviors (e.g., training, apprenticeship) aimed at the enhancement of skills and abilities such as negotiation, presentation, interpersonal communication, and other relevant skills. (p. 161)

Cravens, Lassk, Low, Marshall and Moncrief (2001) found that “high control” organizations—scoring high on scales measuring output control, process control, professional control (when sharing and teamwork are encouraged among salespeople), and cultural control—were “consistently associated with favorable consequences (e.g., higher job satisfaction, lower role ambiguity and conflict, lower turnover intentions, higher salesperson performance and higher organizational commitment)” (p. 247).
Evaluating the research of a number of empirical sales management control system (SMCS) investigations, Baldauf, Cravens, and Piercy (2005) found less conclusive connections overall but conclude that “behavior-based SMCS, when applied in appropriate selling situations, result in favorable consequences” (p. 24).

Ultimately, all sales organizations must manage behavior in some fashion. A well-designed sales training and performance support tool should provide “carrot and stick” mechanisms to manage behaviors that support and reinforce learning and performance to the extent that the organization determines is appropriate.

There are many practical and philosophical similarities shared by social cognitive theory (Bandura, 1977, 1986), instructional design best practices, and salesforce control, particularly in the areas of learning and performance support. Learning and performance support design should contemplate and incorporate key components from all three disciplines to achieve enhanced learning and performance results. This project identifies and distills the key components and integrates them into the online learning and performance support tool.

Sales Skills and Sales Training

Over 30 years ago, Walker, Churchill, and Ford (1977), lamenting the lack of available sales research, wrote that,

Each sales executive works out his own ideas about how to manage a salesforce from an assortment of “principles” he inherits from his predecessor, the customs of his industry, the expectations and demands of his superiors, and his own assumptions about what motivates salespeople and what leads to good sales performance. (p. 156)
This project seeks to provide sales managers with a best practices approach to leading salespeople and enhancing performance. The project identifies two core competencies that drive sales performance—relationship skills and procedural knowledge—and incorporates them into a design supporting ongoing organizational learning and performance support.

Relationship skills involve two parallel processes: the sales transaction process and the personal relationship process. The traditional stages in the sales transaction process can be described as pre-interaction phase, interaction phase, and post-interaction phase (Cron & DeCarlo, 2006). This project focuses on pre-interaction and interaction. Pre-interaction involves setting relationship objectives, gathering information on the prospect, and rehearsal for interaction. Interaction may occur multiple times during the sales process and involves needs discovery, motive identification, and adaptive selling (Cron & DeCarlo).

The personal relationship process includes the following stages: awareness, exploration, expansion, commitment, and dissolution (Campbell, Davis, & Skinner, 2006; Dwyer, Schurr, & Oh, 1987). This project focuses on the exploration phase and its subprocesses as a key antecedent of sales success.

It is in the exploration phase that the sales representative attempts to build trust with the customer. For a customer to have trust in a sales rep, the customer must believe in the sales representative’s integrity and reliability (Campbell et al., 2006, p. 359).
Building trust is a complex but learnable process. The sales literature has identified the ability to establish trust as a key element in sales success and has provided a variety of approaches to building trust, including a salesperson’s cognitive understanding of the importance of trust (Macintosh, Anglin, Szymanski, & Gentry, 1992); the ability to read situations and understand and adapt to a customer’s buying motives (Sujan, 1999); the demonstration of expertise and engaging in mutual disclosure (Crosby, Evans & Cowles, 1990); and an understanding that relationships develop over time, and that “each transaction must be viewed in terms of its history and its anticipated future” (Dwyer et al., 1987, p. 12).

As Liu and Leach (2001) suggest, establishing trust may be the key to winning business,

Because consultative selling often requires an enhanced level of partnering and the sharing of proprietary information, customers may feel that they become increasingly vulnerable to the salesperson. Under these situations, the trust that they establish with the salesperson is what allows consultative selling to take place; without trust, customers do not share the information needed for a salesperson to develop appropriate solutions. (p. 147)

Effective listening has been identified as an important component of developing trust in a sales relationship (Ramsey & Sohi, 1997), an integral part of effective questioning (Comer & Drollinger, 1999), and as the most important success factor in relationship selling (Johnston & Marshall, 2006). Ramsey and Sohi (1997) suggest that listening should be a part of sales training and that the integral activities of listening, sensing, evaluating, and responding should be taught using role-playing.

Salespeople can benefit greatly when they understand the importance of relationship building, the steps and skills involved in building strong personal selling
relationships, and the fundamental importance of listening to prospects and learning what motivates them. However, in order to respond appropriately, they must also understand the complexities of an unfolding sales process.

Knowledge structures of sales interactions have been investigated from a number of perspectives. Sales success has been related to having more elaborate knowledge structures regarding customer types and the corresponding ability to relate that knowledge to a particular sales strategy (H. Sujan, M. Sujan, & Bettman, 1988).

Knowledge structure has been studied relative to declarative knowledge (facts) and procedural knowledge (processes). Wagner, H. Sujan, M. Sujan, Rashotte, and Sternberg (1999), investigating procedural sales knowledge in terms of tacit knowledge rules of thumb, found a clear difference between experienced and inexperienced salespersons. Sharma, Levy, and Evanschitzky (2007) measured declarative knowledge of classifying customers and the procedural knowledge of developing appropriate sales approaches. Their findings confirm the importance of knowledge structures:

Sales trainers and managers should incorporate information integration exercises (e.g. role playing) into training programs. This will encourage salespeople to develop the ability to recognize several, richly developed, and distinctly different customer categories, and will enable them to adapt their sales strategies to the different groups. (p. 176)

The most logical starting point for addressing sales skills is a structured format for enhancing sales relationship skills and procedural knowledge. Sales success is contingent on one’s ability to establish a personal sales relationship and the ability to understand how the sales process will unfold. Acquisition of relationship skills can be supported using facilitated role-playing, and procedural knowledge is enhanced through
planned collaboration between employees of different levels of experience and knowledge.

Web-based Learning and Performance Support

Web-based learning and performance support systems are generally a mix of blended learning, performance support, knowledge management, and learning management. While the components are construed by most writers and researchers as distinct terms with distinct characteristics, there are varying descriptions within categories, and there is substantial crossover and blurring between categories. This section will introduce each of these concepts in terms of description, components and functionality.

Blended Learning

Blended learning is best described as a product of the evolution and intermingling of instructional design, online learning, and performance support. The exact definition will vary depending on the point of view of the practitioner. The most common blended learning format is a combination of classroom and online programs, but a blend may consist of any combination of two or more types of training, including a mix of two or more offline training programs (Driscol & Carliner, 2005).

Gagné, Wager, Golas, and Keller (2005) provide the following inclusive definition:

The term blended learning refers to a training product or program that combines several different delivery methods, such as collaboration software, online courses, electronic performance support systems, and knowledge management practices. Blended learning also describes learning that mixes various event-based activities, including face-to-face classrooms, synchronous online learning, and self-paced learning. (p. 224)
Driscoll and Carliner (2005) suggest that blended learning is not a course design strategy but is actually a curriculum design strategy because it, “. . . looks at more than a single course; it look at a series of courses and learning events that work together to achieve a learning objective” (p. 88).

Rossett, Douglis, and Frazee (2003) provide a list of the variety of assets that might be included in a blended learning framework:

1. Live, formal face-to-face, including instructor-led classroom, workshops, coaching and mentoring, and on-the-job-training.

2. Live, informal face-to-face, including collegial relationships, work teams and role modeling.

3. Virtual collaboration-synchronous, including live e-learning classes and e-mentoring.

4. Virtual collaboration-asynchronous, including email, online bulletin boards, and online communities.

5. Self-paced learning including online modules, online resource links, simulations and scenarios, self-assessments, readings, and workbooks.

6. Performance support, including online help systems, print job aids, online knowledge databases, documentation, and performance support tools (p. 1)

Performance Support

Performance support has developed along with the evolution of computer technology and advances in knowledge in fields such as human performance technology
(Mager, 1997), human resource development (Knowles, 1998), and instructional design (Thiagaragan, 2000). Performance tools can be as simple as handwritten notes reminding one how to operate the copy machine, posters behind the copy machine providing directions on use, electronic support programmed into the copy machine and available on a touchpad, and instructions and processes that guide clearing a jam without input from the user.

Performance support tools began as paper job aids such as checklists, forms, and decision guides. As computer technology advanced, electronic performance support tools such as software help systems, guided presentation templates, and hypertext decision ladders were introduced, and ultimately fully integrated performance support systems were embedded into electronic business process systems (Rosenberg, 2001). Effectively applied performance support improves worker performance by providing just-in-time access to task critical information, methods, and processes. This enhances organizational performance while saving money and time (Rossett & Schafer, 2007).

An inclusive definition combines the perspectives of Rossett and Schafer (2007), “Performance support is a repository for information, processes, and perspectives that inform and guide planning and action (p. 2)”, and Eisenheimer (1998), who describes performance support as providing what a performer needs, when it is needed, and in the form it is needed.

Rossett and Schafer (2007) suggest a typology for understanding performance support that looks at whether or not the support is integrated into the “doing” of the task, the extent of integration, and the extent to which support is static or personalized, or can
be personalized to better meet the needs of the user. Additionally, they identify two broad
types of performance support—planners and sidekicks. Planners are supports that are
used just before or after a task is engaged, while sidekicks are integrated into the tasks.

As noted above, job aids were an important early form of performance sup-
port, and were defined by Harless (1986), an early leader in their development as:

A mechanism that stores information external to the user, guides the perfor-
mance of work, and meets these requirements:
1. Can be accessed and used in real time (employed during actual performance
of the task).
2. Provides signals to the performer on when to perform the task or increments
of the task (stimuli).
3. Provides sufficient direction on how to perform each task (responses).
4. Reduces the quantity of time and/or time the information must be recalled
(reduces access of memory). (p. 108)

Examples of paper-based job aid formats relevant to this project include

1. Steps—a sequential set of steps toward accomplishment of a task.
2. Checklist—a reminder of items to be completed.
3. Decision table—describing if-then situations and consequent actions.
4. Process table or flow chart—a sequence of yes-no questions and consequent
actions leading to ultimate actions.
5. Script—can be read word for word or may just guide direction of conversation.
6. Combinations—combinations of the aids listed above (Willmore, 2006).

Rossett and Gautier-Downes (1991) describe job aid development as a six-
step process:

1. clarify the problem to be solved,
2. choose the format and medium,
3. create a draft of the job aid,
4. test the job aid,
5. revise as necessary, and
6. manage the job aid.

Recently job aids have been largely overshadowed by the development of electronic performance support applications, but paper-based job aids often may still be the most effective solution for specific performance problems. In fact, Brethower and Smalley (1998) suggest that “a rule of thumb is that job aids should be the preferred instructional tool in performance-based instruction” (p. 70). Also, in the context of blended solutions, paper-based job aids are easily uploaded and housed in web-based learning and performance support systems and can be used to prototype components of electronic performance support systems (Eisenheimer, 1998).

An electronic performance support system (EPSS) is best understood as an enterprise performance support system (Rosenberg, 2001). The variety of tools and resources necessary for employees to most efficiently perform their job are made available via each employee’s computer. Describing an EPSS, Gery (1995) states that while the systems can be designed in a variety of ways, “The common denominator that differentiates an electronic support system from other types of systems or interactive resources is the degree to which it integrates information, tools, and methodology for the user” (p. 34).

According to Gery, components of a basic EPSS are interactive training modules, on-demand reference materials, productivity software, interactive decision
support systems, and business terminology resources. More complex systems may also
provide databases (numerical, text, and multi-media), help systems, task templates, and
task-specific software. Other tools that can be added to an EPSS include e-mentoring,
discussion groups, live online chat (Bielawski & Metcalf, 2005), and online accessed job
aids and manuals (Stone & Endicott, 2000).

Electronic performance support tools can be classified and defined by the
extent to which they are integrated into the work flow. External support requires that the
worker stop work to access the support; extrinsic support is internalized in the system,
but, again, the worker must stop work to access it. Intrinsic support is embedded in the
system and is part of the work flow (Gery, 1995).

Knowledge Management

Knowledge management has been significantly enabled by electronic performance support systems. Both EPSS and knowledge management systems utilize a database of information (Rosenberg, 2001) Importantly, the database not only houses and makes information available as needed for performance, it is also capable of receiving and storing new information and knowledge. This enables organizations to purposefully capture knowledge internally and to share it between workers (Bielawski & Metcalf, 2005).

The knowledge management framework provides a single location for searching the company knowledge base, an interface for workers to contribute to the knowledge base, and a system for identifying and contacting subject matter experts (Bielawski &
Metcalf, 2005). What it does not do is generate knowledge. Davenport and Prusak (1998) define knowledge as

> a fluid mix of framed experience, values, contextual information, and expert insight that provides a framework evaluating and incorporating new experiences and information. It originates and is applied in the mind of knowers. (p. 4)

Nonaka and Takeuchi (1995) suggest that knowledge can also be understood as either “explicit,” which could be expressed and described by word, or numbers, and is relatively easily communicated, or “tacit,” which is knowledge that is more intuitive, or just known without knowing why, and is not easily communicated to others. Thus, explicit knowledge is much more easily taught to learners or added to the knowledge database, while companies must develop more sophisticated systems for capturing the elusive tacit knowledge pool.

Nonaka and Takeuchi describe the processes of socialization and externalization for transferring tacit knowledge from one employee to others. Socialization can facilitated by simply observing an employee modeling a behavior. The employee does not need to be able to verbalize the process, but the observer can learn from experiencing the unspoken subtleties. Transformation of tacit knowledge to explicit is facilitated through dialogue and group reflection. This process makes tacit knowledge tangible, “in the shapes of metaphors, analogies, concepts, hypotheses, or models” (p. 64).

Davenport and Prusak (1998) suggest storytelling as an alternative method for capturing tacit knowledge. Rather than have experts deconstruct or describe how they do what they do, they can simply be encouraged to describe situations in narrative form—to tell a story.
Many firms already do something like this when they send videos to branch offices to be shown over lunch. In the past, they were likely to contain a speech or exhortation by a senior executive. Increasingly, though, firms distribute tapes that tell a story of an important business event, such as how a sale was made. Knowledge is more likely to be absorbed if it adheres to the listeners’ sense of ground truth, is delivered with feeling, and is placed in a context or frame that is at least partly shared by its audience. (p. 82)

Managing acquired knowledge is as important as generating it. At a minimum the system should (a) filter inbound information for accuracy and relevance; (b) categorize, tag, and warehouse information; and (c) delete outdated information. While database design is important, effectively managed knowledge management systems also require human oversight (Rosenberg, 2001).

Learning Management Systems

Learning management systems and learning content management systems are often confused, and in many commercial solutions they are integrated. Although many vendors offer combination LCMS/LMS systems, there are core differences between the two. An LCMS manages content (the components that make up a course) and LMS manages learners (who’s taking what, completion ratios, course progress status, scheduling, etc.) (S. Hall & B. Hall, 2004).

Rosenberg (2001) differentiates between a learning portal: “... a web-based, single point of access that serves as a gateway to a variety of e-learning resources on the Web (Internet, intranet, or both)” (p. 157), and a learning management system which provides the technological environment “where employees can plan, access, launch, and manage e-learning on their own” (p. 161).
Functionality that is often included in LCMS/LMS systems includes online course catalog and registration system, up-front competency assessment tools and learning assessment tools, launching of e-learning modules and tracking of completion, integration of knowledge management functionality, support for online collaboration and community development, and, customized reporting (Rosenberg, 2001).

Properly designed and utilized LCMS/LMS systems can provide the infrastructure where blended learning, performance support, and knowledge management come together. “To enable these functions, a system must be able to manage training content and assets, but also manage or link to performance related information (Bielawski & Metcalf, p. 194).

Moodle™ is an example of an open-source learning management system. Primarily developed for education, Moodle™ is also available for business training applications. The functionality of Moodle™ is illustrative of the comprehensive LCMS/LMS approach and provides an excellent model for system development.

Moodle™ enables static course material, including text pages, web pages, hyperlinks to material on the Web and within the Moodle™ site, course directory views, and hyperlinked labels that open text or graphic files. Additionally, Moodle™ enables student uploading of files, quizzes, online journals and surveys, live chat, threaded forums, glossaries, Wikis, and community workshops. The totality of these resources support blended learning, online learning, performance support, and knowledge management (Rice, 2008).
The downside of Moodle™ and other LCMS/LMS is that there is a substantial learning curve. Although LCMS/LMS systems such as Moodle™ provide full functionality, and access to Moodle™ is free, the objectives of this project are functionality, affordability, and usability. A user-friendly system is a requirement for effective use.

Web Applications

This project is paper-based and presents a fully actionable plan (including screenshots) detailing system development. It must be noted, however, that the system is also fully developed and functional, utilizing SaaS (software as a service) applications, also known as “cloud computing,” for development. According to Armbrust et al. (2009),

Cloud Computing refers to both the applications delivered as services over the Internet and the hardware and systems software in the datacenters that provide those services. . . The advantages of SaaS to both end users and service providers are well understood. Service providers enjoy greatly simplified software installation and maintenance and centralized control over versioning; end users can access the service “anytime, anywhere,” share data and collaborate more easily, and keep their data stored safely in the infrastructure. (p. 1)

The functional component of this project utilized a variety of cloud computing applications which are described in the next section.

Summary

The literature reviewed for this project provides ample direction for development of this project. Social cognitive theory was introduced as the foundational concept of the project, supplemented by research on instructional design best practices and the implications of salesforce control. Sales skills were reviewed, and specific skills were selected for inclusion in the performance support learning tools. A comprehensive review
of web-based learning support structures and e-learning curriculum approaches was described. Performance support tools were defined, applications discussed, and the process of tool development was provided. Finally, the concept of cloud computing was introduced.
CHAPTER III

METHODOLOGY

This chapter describes the project development process, including the design of the primary learning and performance support tools, the design of the online support infrastructure, and the functional integration of the learning and performance and support tools and the online infrastructure.

Designing the Online Learning and Performance Support Tool

A systematic approach was used in the design of the online learning and performance support tool. This section describes that approach, which included the following stages: (a) distillation of combined “best practice” elements from the reading on social cognitive theory; principles of instructional design and real-world applications and salesforce control; (b) identification of “core sales skills” from reviewed literature; (c) application of best practices and identified core sales skills to design of the learning and performance support tools; (d) analysis of best practices to relative to exemplary online blended learning criteria; and (e) design online learning and performance support tool.
Distillation of Best Practices

The distillation of learning and performance support best practices involved a systematic and sequential analysis and merging of the key attributes of social cognitive theory (Bandura, 1977, 1986), Merrill’s (2002) First Principles of Instruction, Shell EP’s extended first principles (Collis & Margaryan, 2005), and key components of salesforce behavioral control described by the literature.

These attributes were then merged into a combined list of “best practice” elements for inclusion in the training and performance support tool. Based on the analysis, it was determined that the tool should incorporate and provide support for the following best practice elements.

1. Sales simulation exercises incorporating real-world modeling, role-playing, prior knowledge activation, new knowledge demonstration, problem-solving, and constructive feedback.

2. Use of modeled thought process verbalization when problem solving is involved.

3. Support for audio and video distribution of taped sales training events.

5. Formal coaching included as a component of learning and performance support.

6. Formal and informal collaborative problem-solving and learning activities integrated into the learning curriculum—face-to-face and online.

7. Accommodation for differentiation of learners relative to knowledge and preferred learning styles.
8. Performance support to control the possible downsides of enactive learning.

9. Formalization of behavioral goal-setting and oversight of adequacy of goal-specificity, challenge, and proximity.

10. Support for monitoring salesforce transfer of training.

11. Support for monitoring goal-setting and subsequent follow-through.

Identification of Core Sales Skills

The core sales skills included in the tool were intended to provide a starting point for sales training and a foundation for further learning and growth. As noted in the review of the literature, the ability to build an effective, trusting relationship is perhaps the key to success in personal sales (Liu & Leach, 2001). Relationship building skills such as questioning, listening, and demonstrating relevant expertise, are teachable and especially well-suited to modeled learning.

Also, the successful progression and culmination of the sales relationship has been found to be dependent upon the salesperson’s ability to develop effective procedural strategies based on an analysis of each unique sales interaction. Strategy adjustments may be needed in the course of a single meeting or presentation, or at some point in the development of the sales relationship. The ability to adjust is often predicted by the richness of the salesperson’s procedural knowledge. Procedural knowledge is largely a form of tacit knowledge and is most often acquired through experience (Wagner et al., 1999), but role playing has been identified as an effective training strategy (Sharma, et al., 2007).
Design of Learning and Performance Support Tools

The learning and performance tool design process was guided by three primary sources: Brethower and Smalley’s (1998) insights on performance-based instruction, Sellars’ (2005) format for sales training, and Rossett and Gautier-Downes’ (1991) description of coaching job aids incorporating a heuristic approach. The challenge was to develop a well-designed learning and support tool that incorporated the identified best practice elements and core sales skills.

Brethower and Smalley (1998) describe a performance-focused training process that includes guided practice working from a script, simulated demonstration of mastery, and third-party learning through observation. These criteria are consistent with the identified best practices to be incorporated into the learning and performance support tool.

Sellars (2005) offers a sales training methodology that relies on sales simulations and the use of worksheets to guide preparation for the simulations. The worksheets employ a sequential process that supports learning through detailed preparation, role-playing, and observation.

Rossett and Gautier-Downes (1991) describe coaching job aids that incorporate heuristics, which “. . . provide guidelines for topics that lack straightforward answers . . . in place of the comfort of steps are rules of thumb that can be considered before, during, and after the challenge” (p. 49). The use of these job aids supports self-reflection and evaluation, adaptive learning, and collaborative learning through dialogue.
The Sequence Sales form was developed as a hybrid of these approaches, incorporating detailed preparation, the use of heuristic worksheets, the development of scripts, and the use of simulated sales throughout the sales process. The form functions as a learning tool, a performance support tool, and a knowledge management tool. The form is interactive, can be saved using Adobe Acrobat Reader™, and is easily uploaded to an online environment. The form is used throughout the sales process to guide the strategy of the overall sales process: it is used to prepare the overall strategy and the specific strategy for each sales meeting, as a script for sales meetings and sales training simulations, guide as coaching involvement and support, as a tool format for sales manager analysis and evaluation, as a best practices repository for knowledge management, and as a tool to enable salesforce control.

The entire form consists of 12 pages and includes directions for use, prospect assessment, sales strategy builders, and script builders. The first page of the form (Figure 1) includes

1. General directions for use.
2. Directions for creating a desktop folder and saving the file to it as a template and as a prospect-specific file.
3. Directions for uploading the saved file to the online system.
4. Directions when updating a specific prospect file.

The second page, the Sequence Sales Prospect Assessment Form (Figure 2) includes requires the following information.
Figure 1. Sequence sales introduction page.

1. Contact details, including name, job title, years with company, reports to, purchase role, probability of success assessment, and personal and professional motivation assessment of the named contact.

2. Industry details, including industry group, additional details, economic outlook, hot button issues, and risk management issues.
3. Company details, including product and/or services, number of employees, website, number of locations, insurance buyers and titles, competition analysis, hot button business issues, and risk management issues.

4. Initial projected sales strategy and process description.

5. Identification of potential obstacles and process.
Filling out this form requires the salesperson to conduct some research in preparation for the first meeting: it initiates the identification of buyer motives and the visualization of how the sales process will develop, and it requires that potential obstacles be assessed. These activities support self-directed learning, reflective learning, and collaborative learning.

The Strategy Builder and Script Builder are intended to be used in tandem throughout the sales process. Use of the form in preparation for each meeting connects the steps of the process and supports the previously noted suggestion of Dwyer et.al (1987) that “each transaction must be viewed in terms of its history and its anticipated future” (p. 12).

The Sales Strategy Builder (Figure 3) includes the following.

1. Meeting details, including name of contact for that meeting, date of meeting (date will pre-populate paired sales script builder), purchase role of contact, sales process status assessment, personal relationship status assessment, whether sales person is attending meeting along or accompanied, and if accompanied, name of person and reason.

2. Sales process assessment and direction.

3. Identification of meeting objectives (these objectives will pre-populate paired sales script builder).

4. Relevance assessment of skills and/or actions required to achieve objectives, including questioning, fact-finding listening, active listening, reciprocal disclosure, demonstrating expertise, offering creative solutions, perceiving prospect intentions,
making and keeping a commitment, adapting, self-awareness, negotiation, and presentation skills.

5. Rehearsal(s) completed: colleague if accompanied to meeting, mirror, audio recording and playback, video recording and playback, sales meeting, coach, colleague, spouse/friend, and sales manager.
6. Feedback received from rehearsal and how it was used.

7. Confidence rating selected from very high, high, OK, unsure, or worried, and explanation for selected rating.

The Sales Meeting Script Builder (Figure 4) includes the following.

1. Company name (pre-populates from prospect assessment form and meeting date (pre-populates from sales strategy builder).

2. Meeting intro: salesperson scripts his or her introduction to the meeting.

3. Meeting objectives (pre-populates from sales strategy builder) and questions/lead-ins to meeting objectives.

4. Meeting evaluation: assessment of use of skills/actions rated very important or important, assessment of whether or not objectives were achieved, and description of any unexpected changes that may have occurred during meeting and how they were dealt with.

A Sequence Sales Training Guide was developed (Figure 5) to support facilitation sales simulation training. This guide is intended to support proper sales simulation enactment and heuristic learning, and to reinforce specific key best practices and core sales skills, including,

1. Thought process verbalization when problem solving is involved.

2. Prior knowledge activation.

4. Vicarious self-efficacy.
A Simulation Feedback Form was developed (Figure 6) to support heuristic learning during simulation training. This guide is intended engage the audience as vicarious learners, relative to key best practices and core sales skills, and gives direction in assessing
Sequence Sales Training Guide

Salesperson: ____________________ Partner: ____________________ Date: ______

1. Review Sequence Sales forms and select participants for sales simulation 3-5 days in advance.

2. Select employee to play the part of prospect.

3. Download appropriate Sequence Sales form and email to person chosen to play the part of prospect, and each meeting participant.

4. To set up the simulation, ask the selected seller to introduce the sales situation, providing a brief narrative review of the history of the relationship, touching on strategies, milestones, obstacles, actions taken, etc.

5. Assure that all participants have reviewed the selected Sequence Sales form, and ask them to fill out the feedback form as they observe the simulation.

6. After the simulation, ask audience to provide feedback using the feedback form as a guide.

7. Encourage salesperson to describe his/her “thought process” during the simulation when responding to feedback.

8. Encourage audience feedback on salesperson “thought process” explanations.

9. Ask salesperson, “Given the rehearsal and the feedback, what changes might you make in the actual meeting?”

Notes

Figure 5. Sequence sales training guide page.

1. Overall effectiveness of presentations.

2. Seller’s incorporation of buyer motivation analysis.

3. Seller’s demonstration of knowledge and expertise including industry issues, company challenges, and insurance related issues.

4. Seller’s goals (objectives) and effectiveness achieving them.
5. Seller’s evidenced understanding of relationship and procedure related skills and actions.

The Lessons Learned Form (Figure 7) was developed for use as a learning tool and a knowledge management tool. It is intended to provide for self-evaluative learning for users, content for review and feedback for coaches, and content for review
and feedback for sales managers. The form guides reflective self-evaluation regarding specific successes, misses, and lessons learned going forward.

The complete set of forms is a key component of the Online Sales Training and Performance Support Tool. These forms incorporate the core sales skills, offer flexibility to sales personnel with varying levels of experience, provide an excellent vehicle
to support the process of identifying, capturing, and transferring tacit knowledge, and
support performance improvement at all levels.

Best Practice and Online Blended Learning

The web structure and design approach also utilized the previously identified
best practice elements. The following web-supported blended element components
described by Rossett, Douglos, and Frazee (2003) were analyzed relative to the identified
best practice elements.

1. Virtual collaboration synchronous, including live e-learning classes, e-
coaching, and e-mentoring
2. Virtual collaboration asynchronous, including email, online communities
and discussion boards, blogs, wikis and podcasts
3. Self-paced learning including (print, electronic, online modules, online re-
source links, simulations and scenarios, assessments and self-assessments,
readings and workbooks)
4. Performance support, including online help systems, print job aids, online
knowledge databases, documentation, and performance support tools. (p. 1)

Blended components were identified to support the best practice elements, and
website infrastructure requirements were then determined based on the identified blended
elements. The website infrastructure requirements include

1. Asynchronous virtual collaboration support.
2. Calendaring.
5. Video and audio upload.
6. Online form and database integration.
Website Design

This section discusses the applications and software used in the development process and describes the steps in website development. The applications used and the reasons for selecting them are described first.

Google Apps for Business, and specifically Google Sites was used to develop the website support prototype. Google Sites was used because it supports the following functionality:

1. Excellent security.
2. Multi-level login.
4. Video and Audio (both uploading and embedding).
5. Online form and database support.
6. Embeddable Iframe support.

Caspio.com was used to create the online forms and databases. Caspio.com was used for the following reasons.

1. Excellent security, password and multi-level access wizards.
2. Enables development of searchable databases and custom reporting without knowledge of code.
4. Deploys as embeddable forms.

Blogger.com was used to develop the message board. Blogger.com was chosen for the following reasons.
1. Password protected.

2. Highly customizable.

4. No cost for up to 100 users.

Camtasia Studio was used to develop the Quick Start Video Guides. Camtasia was chosen for the following reasons:

1. Excellent screen capture and video editing software.

2. Developed by Techsmith.com—this company also owns a video hosting Website (Screencast.com)—and that supports high quality, inexpensive, and user friendly video upload and embedding from Camtasia to the host site.

Adobe Acrobat 9 Pro™ was used to develop the performance support documents, including the Sequence Sales Form, Sequence Sales Training Guide, Sales Simulation Feedback Form, and, the Lessons Learned Form. Acrobat 9 Pro™ was chosen for the following reasons:

1. Functionality includes ability to extend the PDF documents so that they can be saved with Adobe Acrobat Reader™.

2. Ability to edit document only when specifically enabled.

3. Support for a variety of useful functions when designing job aids, including dropdown menus, check boxes, comments, and if desired, and embeddable audio and video.

4. Integration with functionality of Acrobat.com, including online screen sharing.

5. Allows users of Acrobat 9 Pro™ to insert and delete pages.
The website for this project includes all of the following functionality.

1. Multi-level password protection.
2. Assigned ability to add and/or edit pages.
3. WYSIWYG (what you see is what you get) content editor.
4. Password protected databases.
5. Document upload.
6. Audio and video uploading and embedding.
7. Calendar creation.
8. Site feedback form.
9. Online collaboration.

The website design process occurred in the following sequence: (a) creation of three level site with multi-level login for sales staff, sales coaches, and sales manager; (b) creation of pages for each level of the site; (c) creation of databases, embedded submission forms, and search and report forms in site pages, and (d) creation of Blogger.com site and embedding in site page. Figure 8 provides a basic schematic of the site architecture. Below is a description of components and functionality of the three levels of the website.

The Sales Staff Home page (Figure 9) is designed for easy navigation and intuitive use. The navigation bar on the left directs the user to the all other pages in the website. The “What to Do Before the Next Meeting” section reinforces the behaviors and activities expected to be accomplished before each sales meeting.
Figure 8. Basic website structure page.

The narrated “Quick Start Video Guides” cover the following topics:

1. Site overview.
2. Sequence sales overview.
3. Prospect assessment form.
4. Sales strategy builder.
5. Sales meeting script builder.

8. Managing the sales process.

The Enter Prospects page (Figure 10) contains an embedded database submission form. Each new prospect is entered here, and the sales person enters his or her email, team, date prospect entered, prospect company name, industry type, description, last contact, next contact, and uploads the Sequence Sales form with the initial known details.

The Manage Sales Process page is used when there are changes in the Sequence Sales form, or when a prospect is either won, lost, or discontinued. Access to the form requires login. Once logged in, the database can be searched by company name, or simply clicking the search button will retrieve all companies the user has in the system.
Figure 10. Enter prospects page.

Clicking on details opens a page with the following read-only client information visible: date entered; company name; industry type, and; description (Figure 11). Editable fields include: last contact; next contact; Sequence Sales form upload; date won; date lost, and; upload of Lessons Learned Form when prospect is won, lost, or discontinued. If the sales coach has added any comments, they will be visible in read-only format. Finally, uploading a modified Sequence Sales form upload will overwrite the existing file with the updated version.

Other links on the navigation bar include

1. The message board for facilitation of online collaboration.

2. A document library for upload of training and support documents (read only for sales personnel.)
3. A video library for links to in-house training videos such as sales simulations.

4. Best practices archive categorized by industry (these are intended to be examples of exemplary Sequence Sales forms).

5. Sales training calendar.

The Sales Coach Home page (Figure 12) has a variety of coach specific resources and allows access to the Sales Staff pages. The “What to Do Before the Next Meeting” section provides guidance on coaching activities.

The “Quick Start Video Guides” provide narrated, coach specific step-by-step directions, including: a site overview; how to monitor your sales team online; and a coach’s perspective of the Sequence Sales form.

\[\text{Figure 11. Manage sales process page.}\]
The Monitor Team Activity page requires login and then opens to a search and report form displaying only data of the logged in coach’s team. The search and report form displays all entries, and can be sorted by username, company name, next contact, coach’s collaboration (described below), and coach’s comments (described below). Each entry also has a details link.

The details page (Figure 13) displays read-only data including: username; date entered; company name; description; last contact; and next contact. Interactive fields include Sequence Sales form (open or download), coach’s comments, and coach’s collaboration. Coach’s comments are intended to direct feedback on the information in the Sequence Sales form. Coach’s collaboration is intended to include the details of how the
Figure 13. Coach’s detail page.

The coach has actively collaborated with the sales agent on that specific account. This could include meeting to discuss the prospect, such as a joint sales call.

The last fields on the form indicate the date the prospect was won, lost, or discontinued, and display a link to open or view the Lessons Learned form if the salesperson has uploaded it.

The Sales Manager’s Home page (Figure 14) supports the following: oversight of all coaches’ and employees’ activities; access to all levels of the site; editing of site content, including adding, editing, and deleting pages; uploading of document, audio, and video files; and embedding of videos. The sales manager is also able to view the website feedback form results and set permissions for pages and calendars.
The “What to Do Before the Next Meeting” section provides guidance for a sales manager using the system. The “Quick Start Video Guides” are sales manager specific and include About Learning and Performance, a narrated PowerPoint video covering conceptual foundation of the website, including social cognitive learning, instructional design best practices, such as salesforce control, and how those concepts are integrated into the website and the tools, and Site Overview, an introductory overview of all levels of the site.

The Monitor Sales Activity page allows the sales manager to monitor activity of each sales agent in a format similar to the sales coach. After logging in, the sales manager can search by team, or just click the search button to bring up a report that includes all salesperson activity by salesperson, company, and team.
The Sales Coach Activity page provides a quick search and report view of the activity of sales coaches regarding coach’s comments and coach’s collaboration. After logging in, the sales manager can either search by team or all activity (Figure 15).

Additionally, sales managers are able to add salespersons and coaches; edit and delete salespersons and coaches; delete prospects and associated forms; identify, categorize, and upload exemplary Sequence Sales and Lessons Learned forms to the Best Practices page; and upload documents and link to resources from the Document Library.

Appendix A provides supplementary screenshots that further illustrate the content and functionality of the website.

Summary

The goal of this project was to create an online learning and performance support tool for insurance agencies that incorporated best practices knowledge from key disciplines.

The method used to develop the Online Learning and Performance Support Tool included: a distillation best practice elements from the reading on social cognitive theory; principles of instructional design and real-world applications; salesforce control; the identification and inclusion of core sales skills from reviewed literature, and; a systematic integration of exemplary web-based blended learning design. The result was the development of a tool that supports learning, performance, and accountability at all levels and retains the flexibility to be further developed and customized by the users.

This project utilized cloud computing tools for three important reasons: to eliminate the need for complex programming skills to control cost of development and
Figure 15. Sales manager monitor sales coach activity page.

to validate cloud computing as a robust and fully functional development tool for this type of project.

Because the tool is intended to be developed as a commercial venture, testing by knowledgeable users has not yet been conducted.
CHAPTER IV

SUMMARY, CONCLUSION, AND RECOMMENDATIONS

During my career I have developed a wide variety of web resources to support individual and organizational learning and performance in the area of risk management. I have also attended many sales training classes and I have been often disappointed with the quality of sales training programs. I have seen many new salespeople hired, only to eventually flounder and fail. It became increasingly apparent to me that there was a need for sales training that went beyond talking-head training and included components such as best practices instructional design and delivery, performance support tools, guided coaching, and sales force control.

However, my experience in developing web resources, participating in sales meetings, and attending sales training was not enough. In order for this project to have credibility, both academic research and practitioner expertise were required. My familiarity with social cognitive theory indicated that it was an excellent place to begin the literature review. This then led to an exploration of instructional design theory and application and the concepts of sales force control. Review of research on sales skills produced a distillation of key skills that could be included in the system. Of particular importance to the final project was an investigation of performance support tools and
their design. Also, a review of web-based learning and performance support gave shape to the online design and important components and functionality.

It is important to note that this tool does not preclude, but rather supports, the use of other sales training resources. Video, audio, and online training modules can be linked to or uploaded to the system and the Sequence Sales forms can be modified to focus on specific skills or sales techniques.

The next step is testing. Testing will occur as the system is used by early purchasers using the Google Business App version. Because the system is designed using cloud computing applications and Adobe Acrobat 9 Pro™, adjustments or modifications can be accomplished expeditiously and inexpensively. After sufficient testing, a more sophisticated version will be produced using the modified version of this project as the prototype.

Performance support will be an important ingredient during the implementation phase. As with any computer application, the tool will only be as good as the users. For instance, the tool supports the use of video training simulations. Encouraging and supporting users to leverage that capability will be an important component of maximizing effectiveness. As testing takes place, performance support strategies will evolve, embedding support in the tool and working with clients to make better use of the tool.

Finally, this tool was designed with small insurance agencies in mind. However, it is not limited to insurance sales. The core sales skills incorporated into the system are applicable to many sales environments and, as mentioned, the tool is adequately flexible to be easily modified to meet the user’s specific needs.
REFERENCES
REFERENCES

APPENDIX A
Figure 1. Audio library.
Figure 2. Best practices.

Figure 3. Message board.
Figure 4. Document library.

Figure 5. Sample training video.
Figure 6. Sales manager edit document library.

Figure 7. Sales manager best practices edit.